ООО «Автоматика»

ОКП 42 2100

ТУ 4221-009-79718634-2009

Прибор электроизмерительный комбинированный с функциями анализатора

Omix P99-MA-3-0.1-RS485

Руководство по эксплуатации v. 2013-12-20 TMS-DVB-KLM

Содержание

1.	Введение	3
	Описание прибора	3
	Указания по безопасности	3
2.	Монтаж и подключение	3
	2.1 Комплект поставки	4
	2.2 Монтаж прибора	4
	2.3 Схема полключения	5
	2.4 Клеммы на залней панели	5
	2 5 Заволские свеления о приборе	7
3	Порядок работы с прибором	8
5.	3 1 Перелия панель	8
	3.2 Назначение кнопок управления	8
	3.3 Блокировка клавиатуры	8
4	9.5 Блокировка клавиатуры Необходими је изстройки приборз	0
4.	4.1. Установка коаффициацион приобра	2
	4.1 Установка коэффициентов трансформации трансформаторов тока и напряжения	9
	4.2 Проверка подключения	11
	4.5 Быоор языка	12
	4.4 Установка времени	12
	4.5 Установка даты	12
	4.6 Инициализация прибора	13
	4.7 Настройка импульсного выхода	13
	4.8 Электрическое подключение («звезда»/«треугольник»/aron)	14
5.	Индикация	15
	5.1 Ток, напряжение и частота	15
	5.2 Сброс пиковых значений напряжения, тока и частоты сети	16
	5.3 Мощность, коэффициент мощности	17
	5.4 Сброс пиковых значений активной мощности	18
	5.5 Максимальное потребление мощности	18
	5.6 Качество питающей сети	19
	5.6.1 Отображение графика формы сетевого напряжения	19
	5.6.2 Анализатор гармоник и КГИ	20
	5.7 Настройка сигнализации	20
	5.8 Измерение потребления электроэнергии	21
	5.9 Настройка тарифной зоны	22
	5.10 Измерение потребления электроэнергии за определенный период	23
6.	Связь с прибором	23
	6.1 Описание протокола MODBUS	23
	6.1.1 Режим перелачи RTU	23
	612 Формат пакета данных режима RTU	24
	6.1.3 Поле адреса	24
	614 Поле функции	24
	615 Поле данных	24
	616 Поле контрольной суммы	24
	6.2 Регистры прибора	25
	6.2 Гетнотры приобра	23
	6. Сетерые подключения	20
	6.4.1. Сетевые настроихи	20
	0.4.1 Сетевой адрес	20 20
	0.4.2 Скорость обмена данными	∠0 20
	0.4.5 Контроль четности	20
	о. 5 пастроика параметров соединения	28
7	о.о Соединение с программои UniArt	29
/.	1 ехнические данные	30
8.	Свидетельство о приемке	30
9.	Ооратная связь	30
10.	Сведения о поверке приборов электроизмерительных цифровых Omix	31
11.	Гарантийные обязательства	31

1. Введение

Описание прибора

Многим потребителям электрической энергии, например, предприятиям, гостиницам, больницам, государственным и частным учреждениям, требуются данные об уровне потребления электроэнергии, качестве и параметрах электрической сети. Для получения данных о напряжении, токе, коэффициенте мощности, частоте питающего напряжения и потребляемой электроэнергии служит электроизмерительный комбинированный цифровой прибор «Omix P99-MA-3-0.1-RS485» с функциями анализатора (далее по тексту «прибор»).

Дополнительно в приборе может быть реализована функция измерения искажений формы питающего напряжения (анализатор гармоник). Некоторые мощные устройства могут создавать гармонические искажения синусоидальной формы напряжения сети; наличие в приборе этой функции поможет обнаружить наличие искажений и принять меры по их устранению.

Omix P99-MA-3-0.1-RS485 — это компактный трехфазный многофункциональный измерительный прибор, предназначенный для встраивания в системы контроля и управления, чрезвычайно простой в установке. Прибор не требует специальных монтажных приспособлений и может быть установлен на лицевую панель любого стандартного электрического щита или шкафа управления.

Конфигурация и настройка прибора выполняются кнопками на лицевой панели. Прибор имеет удобное меню, специализированные параметры защищены паролем.

В приборе реализована простая связь с внешними устройствами посредством стандартных протоколов связи.

Каждый прибор собран на качественной элементной базе с использованием передовых производственных технологий. В процессе сборки приборы подвергаются тщательному контролю качества на всех этапах производства, а после сборки проходят операцию калибровки и поставляются потребителю.

Указания по безопасности

Пожалуйста, внимательно изучите данное руководство перед выполнением монтажных работ.

ВНИМАНИЕ!

- Перед выполнением любых монтажных работ убедитесь, что линии питания прибора и других устройств обесточены. Невыполнение этого правила может привести к несчастным случаям и/или повреждению оборудования.
- Запрещается работа с прибором, имеющим любые механические или электрические повреждения.
- Для предотвращения поражения электрическим током запрещается эксплуатация прибора в условиях повышенной влажности (под дождем, в сырых помещениях и т.п.).
- Периодически проверяйте состояние проводов и кабелей на предмет обнаружения трещин, переломов, повреждений изоляции и прочих повреждений.
- Запрещается работа с прибором людям в утомленном состоянии, а также находящимся в состоянии алкогольного, наркотического опьянения, под воздействием медицинских препаратов или иных химических средств, вызывающих седативный синдром (снотворные, транквилизаторы и др.).
- Выполнение перечисленных выше требований обязательно.

2. Монтаж и подключение

ВНИМАНИЕ!

- Помните, что при работе с прибором на его клеммах и подключенных проводах имеются напряжения, опасные для жизни.
- Все работы должны выполняться только квалифицированным персоналом. Нарушение этого правила может привести к несчастным случаям и/или повреждению оборудования.
- Перед началом любых работ внимательно изучите пункт 1.2 данного руководства.
- Внимательно изучите данное руководство перед подключением прибора к питающей сети.

2.1 Комплект поставки

Прибор поставляется в картонной упаковке размерами приблизительно 105×105×105 мм (В×Ш×Г). Распаковку производите в чистом, сухом месте.

Проверьте комплектность оборудования, находящегося в упаковке:

- 1. Прибор Omix P99-MA-3-0.1-RS485.
- 2. Руководство по эксплуатации.
- 3. Разъем для подключения прибора (2 шт.).

2.2 Монтаж прибора

Внимание! Не устанавливайте прибор вблизи силовых проводов и шин.

Обеспечьте достаточное для проведения технического обслуживания пространство позади прибора.

1. Выберите место на лицевой панели щита для установки прибора. Вырежьте в панели квадратное отверстие размером 90×90 мм для установки прибора (**рис. 1**).

2. Установите прибор в подготовленное отверстие, стараясь не повредить монтажные клипсы (рис. 2). С небольшим усилием закрепите прибор в отверстии панели с помощью клипс.

Рис. 2

3. Убедитесь, что прибор надежно закреплен.

2.3 Схема подключения

На рис. 3 приведена принципиальная электрическая схема подключения прибора к питающей сети.

2.4 Клеммы на задней панели

Все соединения прибора (входы напряжения, питания, интерфейса связи и т. д.) выполняются с помощью клеммных соединений на задней панели прибора. Рекомендуемое усилие затягивания винтов клемм составляет 0,5 Н·м.

внимание!

Убедитесь, что силовые провода трансформаторов тока надежно изолированы и не имеют повреждений. Сечение проводов, которыми подключены трансформаторы тока, должно соответствовать мощности применяемых трансформаторов. Рекомендуется применение трансформаторов тока мощностью не менее 3 ВА, длина соединительных проводов должна быть не более 3 метров.

Провод от клеммы внешнего трансформатора тока, помеченной буквой L, пропустите через обмотку трансформатора прибора со стороны, помеченной буквой L. Другой конец провода подключите к клемме внешнего трансформатора, помеченной буквой К.

внимание!

Замыкание двух проводов, соединенных с расположенными рядом трансформаторами тока других фаз, недопустимо.

Выполните подключение внешних соединений прибора к клеммам на задней панели. Расположение и маркировка клемм внешних подключений изображены на **рис. 4**. Назначение клемм приведено в **таблице 1**.

Таблица 1

Маркировка	Назначение	Примечание
V ₁	Контролируемое напряжение (фаза А)	Политоного всего лидат
V ₂	Контролируемое напряжение (фаза В)	через предохранитель
V ₃	Контролируемое напряжение (фаза С)	- 6 A
Ν	Нейтраль контролируемой сети	
I ₁	Контролируемый ток (фаза А)	
I ₂	Контролируемый ток (фаза А)	
I ₃	Контролируемый ток (фаза А)	
~	Напряжение питания ~100260 В	Или =110260 В
Np	Нейтраль питающей сети	
OUT	Дискретный выход	Макс. нагрузка 150 мА
C, IN2, IN1	Дискретные входы	
COMM (+)	Подключение интерфейса RS-485 (+)	
COMM (-)	Подключение интерфейса RS-485 (-)	

2.5 Заводские сведения о приборе

Включите питание прибора. Прибор начнет самодиагностику, по окончании которой на дисплее отобразится главное меню прибора (**рис. 5**):

Нажмите и удерживайте в течение 6 секунд кнопку F1 на лицевой панели прибора. На дисплей будут выведены заводские данные прибора (**рис. 6**).

Рис. 6

Таблица 2

NºNº	Параметр	Описание
1	EP. DATE	Дата выпуска программного обеспечения прибора
2	VERSION	Версия ПО прибора
3	CT Rate	Коэффициент трансформатора тока
4	Туре	Тип подключения сети («звезда»/«треугольник»)
5	UNIT ID	Заводской номер, присвоенный при калибровке
6	IP Address	IP-адрес прибора (опция)
7	Comm#	Адрес подключения по RS-485
8	Line:	Авто/Выкл/Замена – состояние автокоррекции для подключения К L

3. Порядок работы с прибором

3.1 Передняя панель

На передней панели прибора расположен графический дисплей и шесть кнопок управления (рис. 7).

Все измеренные данные выводятся на графический дисплей с разрешением 320×240 точек. Возможности индикации подробно описаны в разделе 5.

Кнопки управления и их функции подробно описаны в пункте 3.2.

	Omix 💿 🖻 🌃
	15:08:04 ГЛАВНОЕ МЕНЮ НАПР, ТОК, ЧАСТОТА МОЩН, КОЭ⊕ МОЩН КАЧЕСТВО СЕТИ СЧЕТЧИК ЭНЕРГИИ СИГНАЛИЗАЦИЯ ТЕХ. ДАННЫЕ ↑ ↓
Back	F1 F2 F3 F4 Enter

Рис. 7

3.2 Назначение кнопок управления

Прибор имеет шесть кнопок управления. С их помощью осуществляется доступ ко всем функциям прибора.

Кнопки управления расположены под дисплеем в нижней части лицевой панели. Нажатие кнопки сопровождается щелчком.

Кнопка Enter служит для подтверждения установок и запуска выполнения команд.

Кнопки F1, F2, F3, F4 выполняют функции перемещения курсора или выбора строки, на которой установлен курсор (F3 и F4), увеличения и уменьшения вводимых значений (F1 и F2), а также используются для выбора выводимых на экран параметров (все кнопки). Во время работы в нижней части дисплея выводятся подсказки, поясняющие назначение кнопок.

Кнопка Back служит для возврата к предыдущему уровню и для выхода в главное меню.

3.3 Блокировка клавиатуры

Клавиатура прибора может быть отключена (блокирована) для предотвращения случайного нажатия или неквалифицированного вмешательства в настройки прибора.

Для включения блокировки клавиатуры нажмите и удерживайте в течение 6 секунд кнопку Enter до появления надписи «Блок. клавиатуры». После включения блокировки при нажатии любой кнопки на дисплее появляется надпись «Блок. клавиатуры».

Для выключения блокировки клавиатуры снова нажмите и удерживайте в течение 6 секунд кнопку Enter. На дисплее появится надпись «Клавиатура вкл.», после чего клавиатура будет работать в обычном режиме.

Внимание! Блокировка клавиатуры НЕ работает в главном меню!

4. Необходимые настройки прибора

В этом разделе описаны основные настройки прибора, которые необходимо выполнить для его правильной дальнейшей работы.

ВНИМАНИЕ!

- Необходимо знать и правильно задать в настройках прибора коэффициент трансформации используемых совместно с прибором трансформаторов напряжения (при необходимости их использования, см. п. 3.4, шаг 7) и тока.
- На всех трех контролируемых фазах должны быть установлены идентичные трансформаторы напряжения и тока.

Убедитесь, что силовые провода трансформаторов тока надежно изолированы и не имеют повреждений. Сечение проводов, которыми подключены трансформаторы тока, должно соответствовать мощности применяемых трансформаторов. Рекомендуется применение трансформаторов тока мощностью не менее 3 ВА, длина соединительных проводов должна быть не более 3 метров.

4.1 Установка коэффициентов трансформации трансформаторов тока и напряжения

ВНИМАНИЕ!

Задание коэффициента трансформации трансформаторов тока является одной из наиболее важных настроек прибора, необходимых для его правильной работы.

Для настройки выполните следующие действия:

1. Находясь в главном меню, выберите пункт «**Tex. данные**» (**рис. 8**):

Рис. 8

2. Нажмите Enter. На дисплее появится экран ввода пароля (рис. 9).

По умолчанию в приборе установлен пароль «1». Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2.

3. Нажмите Enter. В случае ввода неверного пароля на дисплей будет выведено сообщение об ошибке. Повторите ввод пароля еще раз. При правильном вводе пароля на дисплее будет отображено меню «Tex. данные» (рис. 10):

Рис. 10

При нажатии кнопки F1 («След») на дисплее отобразятся дополнительные настройки прибора.

- 4. Выберите пункт «Коэф-ты трансф.».
- 5. Нажмите Enter. На дисплее отобразится экран задания коэффициентов трансформации (рис. 11):

Рис. 11

6. Выберите пункт «Уст. транс. тока» и нажмите Enter. На дисплее появится экран установки первичного тока трансформатора (рис. 12).

Задайте значение первичного тока, указанное в маркировке используемого трансформатора. Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2.

7. Для настройки коэффициента трансформации трансформаторов напряжения (используются в случае, если фазное напряжение сети превышает 230 В, например, 660 В), вернитесь в предыдущий уровень меню, нажав кнопку Back, и выберите пункт «Уст. транс. напр». Нажмите Enter. На дисплее появится экран установки первичного напряжения трансформатора (рис. 13):

Рис. 13

Задайте значение первичного напряжения, указанное в маркировке используемого трансформатора. Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2.

4.2 Проверка подключения

Внимание! Для исключения проблем, вызванных ошибками подключения контролируемых напряжений или трансформаторов тока, необходимо сначала выполнить проверку чередования фаз.

Для выполнения проверки подключения войдите в меню «Tex. данные» (п. 4.1).

1. Нажмите Enter. На дисплее появится экран ввода пароля (рис. 14).

Рис. 14

- 2. Введите пароль «11».
- 3. Нажмите Enter. На дисплее появится экран проверки подключения (рис. 15):

	т полк	пючениа —
	VOLI	CURRENT
11	OK	OK
12	OK OK	OK OK
LZ	UK	UK
L3	OK	OK
ORD	ER OK	CT=5

Рис. 15

Описание сообщений, выводимых на дисплей в этом режиме, дано в таблицах 3 и 4.

Таблица 3

Сообщение	Напряжение (вольт)	Ток (ампер)
ОК	На фазных проводах, отмеченных сооб- щением «ОК», присутствует напряжение. Если сообщение отсутствует на одной или нескольких фазах, подключение выпол- нено неправильно	Токи в фазах, отмеченных сообщением «OK», присутствуют и сфазированы с соответствую- щими напряжениями. Если сообщение отсут- ствует на одной или нескольких фазах, подклю- чение выполнено неправильно
OPP	Не используется	Нарушена фазировка трансформатора тока
NO	Напряжение отсутствует	Ток отсутствует

Таблица 4

Сообщение	Напряжение (вольт)	
OK	Чередование фаз на входе напряжения верно	
OPP	Неправильное чередование фаз на входе напряжения	

4.3 Выбор языка

Прибор поддерживает пять языков экранных меню, в том числе и русский. Для выбора требуемого языка нажмите и удерживайте в течение 6 секунд кнопку F2.

4.4 Установка времени

Для установки времени войдите в меню **«Тех. данные»** (п. 4.1). В меню **«Тех. данные»** выберите пункт **«Установка времени»** и нажмите кнопку Enter. На дисплее появится экран установки времени (**рис. 16**):

Рис. 16

Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2.

4.5 Установка даты

Для установки даты войдите в меню «**Tex. данные**» (п. 4.1). В меню «**Tex. данные**» выберите пункт «**Установка даты**» и нажмите кнопку Enter. На дисплее появится экран установки даты (**рис. 17**):

Рис. 17

Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2.

4.6 Инициализация прибора

Для инициализации прибора (сброс минимальных/максимальных значений) выполните следующие действия:

- 1. Войдите в меню «**Тех. данные**» (п. 4.1).
- 2. В поле для ввода пароля задайте значение 6425. Для перемещения курсора используйте кнопки F3 и F4, для задания значения кнопки F1 и F2.
- 3. Нажмите Enter. На экране появится надпись Energy Init, все значения, содержащиеся в памяти, будут обнулены.

4.7 Настройка импульсного выхода

Дискретный выход может использоваться как импульсный выход, в котором каждый импульс соответствует заданному расходу энергии. Для настройки импульсного выхода выполните следующие действия:

1. Войдите в меню «**Тех. данные**» (п. 4.1) (**рис. 18**):

Рис. 18

2. Выберите пункт «Уст. энерг. импульса» и нажмите Enter. На дисплее появится экран настройки импульсного выхода (рис. 19):

- 3. По умолчанию дискретный выход используется в качестве выхода сигнализации. Чтобы использовать дискретный выход в качестве импульсного выхода нажмите кнопку F1 два раза.
- 4. Нажмите Back. На дисплее появится экран настройки импульсного выхода. Настройте расход энергии на каждый импульс и время импульса (**рис. 20**):

Рис. 20

ВНИМАНИЕ! Дискретный выход может использоваться либо в качестве выхода сигнализации либо в качестве импульсного выхода, но не одновременно.

4.8 Электрическое подключение («звезда»/«треугольник»/aron)

- 1. Войдите в меню «**Тех. данные**» (п. 4.1).
- 2. Нажмите кнопку F1 для перехода в дополнительные настройки.
- 3. Выберите пункт «Элект. подключение» и нажмите кнопку Enter (рис. 21):

4. Выберите пункт «Соед. звезда/треуг» и нажмите кнопку Enter (рис. 22).

5. Используйте кнопки F2, F3 и F4 для выбора типа подключения.

5. Индикация

В этом разделе описаны все отображаемые прибором параметры сети: напряжение, ток, мощность, коэффициент мощности, потребляемая энергия и качество сети.

5.1 Ток, напряжение и частота

Для вывода на дисплей значений напряжения, тока и частоты сети для всех трех фаз выполните следующие действия:

1. Находясь в основном меню, выберите пункт «Напр, ток, частота» (рис. 23):

Рис. 23

2. Нажмите кнопку Enter. На дисплее появится экран настройки режима отображения значений напряжения, тока и частоты сети (**рис. 24**):

Рис. 24

3. Выберите пункт «Текущие значения» и нажмите Enter. На дисплее появится экран текущих, максимальных и минимальных значений напряжения, тока и частоты сети раздельно по трем фазам (рис. 25).

Рис. 25

- 4. Для выбора режима вывода значений напряжений сети (фазные или линейные напряжения) нажмите кнопку F1.
- 5. Для отображения значений токов нажмите кнопку F2.
- 6. Для отображения значений тока и напряжения в виде таблицы нажмите кнопку F3.
- 7. Для отображения значений частоты сети нажмите кнопку F4.
- 8. Используйте кнопку Enter для переключения между таблицей и графиком.

5.2 Сброс пиковых значений напряжения, тока и частоты сети

1. Находясь в основном меню, выберите пункт «Напр, ток, частота» (рис. 26):

Рис. 26

2. Нажмите кнопку Enter. На дисплее появится экран настройки режима отображения значений напряжения, тока и частоты сети (**рис. 27**):

Рис. 27

3. Выберите пункт «Сброс мин.-макс.» и нажмите Enter. На дисплее появится экран ввода пароля (рис. 28):

4. В поле для ввода пароля задайте значение 6474. Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2. Затем нажмите Enter. Пиковые значения будут сброшены.

5.3 Мощность, коэффициент мощности

Для вывода на дисплей значений мощности и коэффициента мощности по трем фазам выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Мощн, коэф мощн».
- 2. Нажмите Enter, на дисплее появится экран вывода значений мощности и коэффициента мощности (рис. 29):

Рис. 29

3. Выберите пункт «Текущие значения» и нажмите Enter. На дисплее появится экран текущих, максимальных и минимальных значений мощности (рис. 30):

Рис. 30

- 4. Для отображения значений реактивной мощности нажмите кнопку F1.
- 5. Для отображения значений мощности в виде таблицы нажмите кнопку F2.
- 6. Для отображения значений коэффициента мощности нажмите кнопку F3.
- 7. Для отображения суммарного значения активной, реактивной и полной мощности по трем фазам нажмите кнопку F4.
- 8. Используйте кнопку Enter для переключения между таблицей и графиком.

Описание экранных обозначений параметров приведено в таблице 5.

Таблица 5

Параметр	Описание	Ед. измерения
Р	Активная мощность по каждой фазе	Вт (W)
Q	Реактивная мощность по каждой фазе	BAP (VAR)
S	Полная мощность по каждой фазе	BA (VA)
ΣΡ	Суммарная активная мощность по трем фазам	Вт (W)
ΣQ	Суммарная реактивная мощность по трем фазам	BAP (VAR)
ΣS	Суммарная полная мощность по трем фазам	BA (VA)
PF	Коэффициент мощности	

5.4 Сброс пиковых значений активной мощности

Для сброса значений мощности по трем фазам выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Мощн, коэф мощн».
- 2. Нажмите Enter, на дисплее появится экран вывода значений мощности и коэффициента мощности (рис. 31):

3. Выберите пункт «Сброс Мин.-макс.», если требуется сбросить пиковые значения, и нажмите Enter. На дисплее появится экран ввода пароля (рис. 32):

В поле для ввода пароля задайте значение 6474. Для перемещения курсора используйте кнопки F3 и F4, для задания значения – кнопки F1 и F2. Затем нажмите Enter. Пиковые значения будут сброшены.

5.5 Максимальное потребление мощности

Для отображения значений максимального потребления мощности по трем фазам выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Мощн, коэф мощн».
- 2. Нажмите Enter, на дисплее появится экран вывода значений мощности и коэффициента мощности (рис. 33):

3. Выберите пункт «Макс. потребление» и нажмите Enter. На дисплее появится экран потребления мощности.

5.6 Качество питающей сети

Внимание! Наличие в электрической сети нечетных гармоник, генерируемых некоторыми устройствами, может привести к выходу оборудования из строя. Нечетные гармоники необходимо подавлять с помощью фильтров.

В приборе имеются функции анализа гармонического состава сетевого напряжения: отображение графика формы напряжения сети и гистограммы частотного спектра сетевого напряжения с выводом значения коэффициента гармонических искажений (КГИ).

5.6.1 Отображение графика формы сетевого напряжения

Для вывода на дисплей графика формы сетевого напряжения выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Качество сети».
- 2. Нажмите Enter. На дисплее появится экран выбора режима отображения качества сети (рис. 34):

3. Выберите пункт «Графики» и нажмите Enter. На дисплей будет выведен график формы сетевого напряжения (рис. 35):

Рис. 35

Возможно отображение графиков формы сетевого напряжения и тока для каждой фазы в отдельности.

- 4. Используйте кнопку F1 для выбора отображения напряжения.
- 5. Используйте кнопку F2 для выбора отображения тока.
- 6. Используйте кнопку F4 для выбора требуемой фазы.

5.6.2 Анализатор гармоник и КГИ

Для анализа и отображения частотного спектра сети и коэффициента гармонических искажений выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Качество сети».
- 2. Нажмите Enter. На дисплее появится экран выбора режима отображения качества сети (рис. 36):

Рис. 36

- 3. Выберите пункт «Гармоники» и нажмите Enter. На дисплей будет выведена гистограмма частотного спектра сетевого напряжения.
- 4. Используйте кнопки F1 и F2 для переключения между отображением спектра тока и напряжения.
- 5. Используйте кнопку F3 для выбора требуемой фазы.
- 6. Используйте кнопку F4 для «прокрутки» гистограммы от 1-й до 64-й гармоники.

Внимание! Столбец гистограммы, соответствующий 1-й гармонике (100%) отображается непропорционально относительно остальных гармоник для обеспечения возможности просмотра очень малых величин остальных гармоник.

5.7 Настройка сигнализации

- 1. Находясь в основном меню, выберите пункт «Сигнализация».
- 2. Нажмите Enter. На дисплее появится экран выбора режима сигнализации (рис. 37):

Рис. 37

3. Выберите необходимый тип сигнализации (по напряжению, по току и т. д.) (рис. 38):

Рис. 38

4. Введите значения уставок, задержку включения/выключения и другие параметры (рис. 39):

Рис. 39

При срабатывании определенного типа сигнализации данный пункт меню будет отображаться красным шрифтом.

5.8 Измерение потребления электроэнергии

Для вывода на дисплей количества использованной активной, реактивной и полной электрической энергии выполните следующие действия:

- 1. Находясь в основном меню, выберите пункт «Счетчик энергии».
- 2. Нажмите Enter. На дисплее появится экран выбора счетчиков энергии (рис. 40):

Рис. 40

- 3. Выберите пункт «Основной счетчик» (данный счетчик работает с первого включения прибора в сеть, и его невозможно обнулить).
- 4. Нажмите Enter. На дисплее появится экран отображения значений энергии (рис. 41)

- 5. Используйте кнопку F1 для вывода значений затрат электроэнергии при различных тарифах.
- 6. Используйте кнопку F2 для вывода значений затрат электроэнергии отдельно для каждой фазы или суммарно по трем фазам.
- 7. Используйте кнопку F3 для вывода значений затрат активной, реактивной, полной и суммарной электроэнергий.
- 8. Используйте кнопку F4 для вывода значений переданной (ИМП) и принятой (ЭКСП) электроэнергии.
- 9. Для просмотра величин потребления электроэнергии после последнего сброса используйте пункт меню «Вторичный счетчик» (рис. 42).

Рис. 42

5.9 Настройка тарифной зоны (TOU)

Для выбора тарифной зоны выполните следующие действия:

- 1. Войдите в меню «**Тех. данные**» (п. 4.1).
- 2. Нажмите кнопку F1 для перехода в дополнительные настройки.
- 3. Выберите пункт «Выбор тарифа».
- 4. Нажмите Enter. На дисплее появится экран тарифов (рис. 43)

Рис. 43

5. Выберите тарифную зону и нажмите Enter.

5.10 Измерение потребления электроэнергии за определенный период

Для вывода на дисплей количества полной электрической энергии за определенный период выполните следующие действия:

- 1. Выполните пункты 5.8.1-5.8.2.
- 2. Выберите пункт «Энергия за период».
- 3. Нажмите Enter. На дисплее появится экран отображения значений энергии за период (рис. 44)

- 4. Используйте кнопку F1 для ввода дат периода.
- 5. Используйте кнопки F3 и F4 изменения дат на месяц.

6. Связь с прибором

В приборе имеется последовательный интерфейс, позволяющий подключать его к сети для связи с компьютером и другими устройствами, поддерживающими протокол MODBUS.

MODBUS – широко распространенный протокол связи, являющийся промышленным стандартом. С помощью протокола MODBUS можно осуществить связь между персональным компьютером и несколькими приборами (до 247 приборов в сети). При этом компьютер является ведущим (master), а приборы – ведомыми устройствами (slaves). Компьютер выполняет последовательный опрос подключенных к нему приборов и получает от них запрашиваемые данные. Прибор (приборы) отвечает на запрос ведущего устройства, но не может начать передавать данные самостоятельно. На один запрос ведущего устройства генерируется один ответ одного ведомого устройства.

6.1 Описание протокола MODBUS

6.1.1 Режим передачи RTU

Протокол MODBUS использует режим передачи RTU (Remote Transmission Unit – удаленный терминал). В режиме RTU для передачи данных используется двоичная 8-битная последовательность с контролем четности (EVEN parity) или без контроля четности (NO parity). В настройках связи с прибором необходимо задать требуемые параметры (таблица 6).

Таблица 6

Параметр	Значение	
Стартовый бит	1	
Биты данных	8	
Бит контроля четности	1	
Стоп-бит	1	

6.1.2 Формат пакета данных режима RTU

Информация запроса и ответа посылается в виде пакета данных. Каждый пакет содержит:

- адрес устройства в сети;
- функцию (описание функций см. в п. 6.1.4);
- передаваемые данные;
- контрольную сумму.

			Таблица 7
Адрес	Функция	Данные	Контрольная сумма
8 бит	8 бит	N * 8 бит	16 бит

Если приемное устройство (прибор) не получит никаких данных или возникнет пауза в сообщении с длительностью, требуемой для передачи 3,5 слов данных на заданной скорости, это означает, что передача завершена или аварийно прервана. Следующий байт данных, полученный прибором, может быть определен как адрес. Максимальная длина запроса и ответа может достигать 256 байт с учетом контрольной суммы.

6.1.3 Поле адреса

Каждому прибору, находящемуся в сети, присваивается адрес, назначаемый пользователем. Адрес может быть задан числом в диапазоне 1–247. Каждый прибор должен иметь свой уникальный адрес, дублирование адресов в пределах сети недопустимо.

6.1.4 Поле функции

Данный параметр содержит код операции, сообщающий прибору команду, которую требуется выполнить.

В формате сообщений прибора предусмотрено использование и передача следующих функций (таблица 8):

Таблица 8

Функция	Наименование в MODBUS	Действие	
Function 03	Чтение регистра памяти	Получение данных с прибора	
Function 04	Чтение входного регистра	Получение данных с прибора	
Function 06	Запись одного регистра	Передача данных прибору	
Function 16	Запись нескольких регистров	Передача данных прибору	

6.1.5 Поле данных

Этот параметр содержит собственно данные запроса или результатов измерений, а также инструкции, посылаемые компьютером прибору. В этих инструкциях содержатся команды для выполнения требуемых действий или запрос на отправку данных. В ответном сообщении от прибора может присутствовать информация о содержимом одного или нескольких регистров.

6.1.6 Поле контрольной суммы

Поле контрольной суммы содержит данные для проверки целостности полученного пакета данных, вычисленные методом циклического избыточного кода (Cyclical Redundancy Check – CRC16).

Более подробная информация о CRC содержится в руководстве по протоколу MODBUS.

6.2 Регистры прибора

Прибор поддерживает сообщения, содержащие функции типа 03 и 04 (см. таблицу 8). В ответе на запрос от компьютера на чтение из определенного поля может содержаться функция типа 03 или 04 в зависимости от формата полученного запроса.

Отличие этих функций заключается в том, что при использовании функции типа 03 прибор посылает только целую часть значения поля, запрашиваемого компьютером. Соответственно, компьютер отобразит в соответствующем поле значение целой части.

При использовании функции типа 04 значение запрашиваемого поля передается в виде целой и дробной части, хранящихся в отдельных регистрах. Компьютер объединяет целую и дробную часть в единое число с плавающей точкой. Подробнее информация об операциях с плавающей точкой содержится в документе IEEE Standard 754 Floating Point.

Пример 1:

Если запрос с компьютера содержит функцию типа 03, ответ будет содержать только целую часть содержимого запрашиваемого поля.

Компьютер запрашивает значение напряжения на фазе 1, реальное напряжение на фазе 1 равно 230,5 В.

Функция типа 03 обеспечивает передачу только целой части содержимого запрашиваемого поля, т.е. на экране компьютера отобразится значение 230 В.

Пример 2:

Если запрос с компьютера содержит функцию типа 04, ответ будет содержать два числа (целую и дробную часть), считанные из отдельных регистров, соответствующих запрашиваемому полю, т.е. полную информацию о значении данного поля.

Компьютер запрашивает значение напряжения на фазе 1, реальное напряжение на фазе 1 равно 230,5 В.

Функция типа 04 обеспечивает передачу ответа, состоящего из содержимого регистров 1 и 2, объединением которых формируется число с плавающей точкой, равное полному значению содержимого запрашиваемого поля, т. е. на экране компьютера отобразится значение 230,5 В.

Назначения регистров перечислены в таблице 9.

Таблица 9

NºNº	Регистр	Поле	Тип
1	1-2	Напряжение, фаза 1	Чтение
2	3-4	Напряжение, фаза 2	Чтение
3	5-6	Напряжение, фаза 3	Чтение
4	7-8	Линейное напряжение Ф.1 – Ф.2	Чтение
5	9-10	Линейное напряжение Ф.2 – Ф.3	Чтение
6	11-12	Линейное напряжение Ф.3 – Ф.1	Чтение
7	13-14	Ток, фаза 1	Чтение
8	15-16	Ток, фаза 2	Чтение
9	17-18	Ток, фаза 3	Чтение
10	19-20	Активная мощность, фаза 1	Чтение
11	21-22	Активная мощность, фаза 2	Чтение
12	23-24	Активная мощность, фаза 3	Чтение
13	25-26	Суммарная активная мощность, Ф.1+Ф.2+Ф.3	Чтение
14	27-28	Полная мощность, фаза 1	Чтение
15	29-30	Полная мощность, фаза 2	Чтение
16	31-32	Полная мощность, фаза 3	Чтение
17	33-34	Суммарная полная мощность, Ф.1+Ф.2+Ф.3	Чтение
18	35-36	Реактивная мощность, фаза 1	Чтение
19	37-38	Реактивная мощность, фаза 2	Чтение
20	39-40	Реактивная мощность, фаза 3	Чтение
21	41-42	Суммарная реактивная мощность, Ф.1+Ф.2+Ф.3	Чтение
22	43-44	Коэффициент мощности, фаза 1	Чтение
23	45-46	Коэффициент мощности, фаза 2	Чтение
24	47-48	Коэффициент мощности, фаза 2	Чтение
25	49-50	Суммарный коэфф. мощности, Ф.1+Ф.2+Ф.3	Чтение
26	51-52	Частота напряжения сети, фаза 1	Чтение
27	53-54	Частота напряжения сети, фаза 2	Чтение
28	55-56	Частота напряжения сети, фаза 3	Чтение
29	57-58	Ток в нулевом проводе	Чтение
30	59-60	-	

31	61-62		
32	63-64		
33	65-66		
34	67-68		
35	69-70		
36	71-72		
37	73-74		
38	75-76		
30	77-78		
40	70.80		Итение
40	81.82		Итение
41	83.84	Полиод энергия	Итациа
42	05.96	Полная энсргия	Итание
43	03-00	Дага и время	Чтение
44	07-00	А прод времени от 1 до 2000 с	Чтение
43	89-90	Адрес в сеги	Чтение
40	91-92	Скорость передачи	Чтение
4/	93-94		Чтение
48	95-96	Коэффициент трансформации трансформатора тока	Чтение/запись
49	97-98	Среднее напряжение за период времени (44)	Чтение/запись
50	99-100	Средний ток за период времени (44)	Чтение/запись
51	101-102	Средняя мощность за период времени (44)	Чтение/запись
52	103-104	Средняя частота за период времени (44)	Чтение/запись
53	105-106	КГИ напряжения, фаза 1	Чтение
54	107-108	КГИ напряжения, фаза 2	Чтение
55	109-110	КГИ напряжения, фаза 3	Чтение
56	111-112	КГИ тока, фаза 1	Чтение
57	113-114	КГИ тока, фаза 2	Чтение
58	115-116	КГИ тока, фаза 3	Чтение
59			
60	119-120	Активная энергия, фаза 1	Чтение
61	121-122	Активная энергия, фаза 2	Чтение
62	123-124	Активная энергия, фаза 1	Чтение
63	125-126	Реактивная энергия, фаза 1	Чтение
64	127-128	Реактивная энергия, фаза 2	Чтение
65	129-130	Реактивная энергия, фаза 3	Чтение
66	131-132	Полная мощность, фаза 1	Чтение
67	133-134	Полная мощность, фаза 2	Чтение
68	135-136	Полная мощность, фаза 3	Чтение
301	601-602	Уровень 1-й гармоники напряжения, фаза 1	Чтение
302	603-604	Уровень 2-й гармоники напряжения, фаза 1	Чтение
331	661-662	Vповень 31-й гармоники напражения фаза 1	Uтение
222	662 664	Уровень 31-и гармоники напряжения, фаза 1	Итаниа
222	665 666	уровень 52-и гармоники напряжения, фаза 1	Чтение
224	003-000	уровень 1-и гармоники напряжения, фаза 2	Чтение
334	667-668	у ровень 2-и гармоники напряжения, фаза 2	Чтение
363	725-726	Уровень 31-й гармоники напряжения, фаза 2	Чтение
364	727-728	Уровень 32-й гармоники напряжения, фаза 2	Чтение
365	729-730	Уровень 1-й гармоники напряжения, фаза 3	Чтение
366	731-732	Уровень 2-й гармоники напряжения, фаза 3	Чтение
395	789-790	Уровень 31-й гармоники напряжения, фаза 3	Чтение
396	791-792	Уровень 32-й гармоники напряжения, фаза 3	Чтение
397	793-794	Уровень 1-й гармоники тока, фаза 1	Чтение

398	795-796	Уровень 2-й гармоники тока, фаза 1	Чтение
	853-854	Уровень 31-й гармоники тока, фаза 1	Чтение
	855-856	Уровень 32-й гармоники тока, фаза 1	Чтение
	857-858	Уровень 1-й гармоники тока, фаза 2	Чтение
	859-860	Уровень 2-й гармоники тока, фаза 2	Чтение
	017 010		
	917-918	Уровень 31-й гармоники тока, фаза 2	Чтение
	919-920	Уровень 32-й гармоники тока, фаза 2	Чтение
	921-922	Уровень 1-й гармоники тока, фаза 3	Чтение
	923-924	Уровень 2-й гармоники тока, фаза 3	Чтение
	981-982	Уровень 31-й гармоники тока, фаза 3	Чтение
	983-984	Уровень 32-й гармоники тока, фаза 3	Чтение

6.3 Сетевые подключения

Связь с прибором осуществляется посредством интерфейса RS-485. Разъем интерфейса находится на задней панели прибора, подключение выполняется с помощью ответной части разъема, входящей в комплект.

6.4 Сетевые настройки

Для обеспечения связи между компьютером и прибором необходимо в обоих устройствах задать следующие параметры связи:

- Сетевой адрес
- Скорость обмена данными
- Контроль четности

6.4.1 Сетевой адрес

Каждому прибору в сети должен быть присвоен свой уникальный адрес. В используемом в приборе протоколе MODBUS разрешается задавать адреса в диапазоне 1–247.

6.4.2 Скорость обмена данными

Скорость обмена данными – это скорость, измеряемая в бит/с, с которой происходит передача сообщений между прибором и компьютером. При хорошем качестве линии связи возможно использование бо́льших скоростей. Если линия имеет низкую помехозащищенность или проложена в местах с большой напряженностью помех, скорость обмена, возможно, придется уменьшить.

Прибор поддерживает следующие скорости обмена данными:

600	бит/с
1200	бит/с
2400	бит/с
4800	бит/с
9600	бит/с
19200	бит/с

6.4.3 Контроль четности

Может быть задано значение контроля четности No или Even (подробности см в п. 6.1.1).

6.5 Настройка параметров соединения

Войдите в меню «**Tex.** данные» (подробности см. в п. 4.1). В меню «**Tex.** данные» выберите пункт «**Установка подкл.**» и нажмите Enter. Выберите пункт «**Последоват подкл.**». На дисплее появится экран настройки параметров соединения (**рис. 45**):

Используйте кнопки для задания сетевого адреса, скорости обмена данными и контроля четности.

Внимание! Любые изменения вступают в силу немедленно. Никакие дополнительные действия не требуются.

6.6 Соединение с программой UniArt

UniArt – специализированная программа, используемая для чтения и записи данных в регистры прибора. Каждая строка в таблице регистров представляет собой отдельное поле, содержащее информацию. Программа UniArt управляет каждым полем как отдельным параметром (преобразует значение каждого поля в значение определенного параметра).

Для считывания значений полей с использованием программы UniArt выполните следующие действия:

- 1. Найдите в таблице регистров параметр, который требуется считать.
- Запомните порядковый номер из первой графы таблицы. 2.
- 3. Определите номер файла, в котором будет сохранен данный параметр.

Один файл, создаваемый программой, может содержать в себе до 128 параметров (значений полей). При бо́льшем количестве параметров программа создаст несколько отдельных файлов.

Номера файлов соотносятся с порядковыми номерами полей следующим образом:

Файл № 0	содержит поля с номерами	1-128
Файл № 1	содержит поля с номерами	129–256
Файл № 2	содержит поля с номерами	257-384
Файл № 3	содержит поля с номерами	385-512

4. Определите номер позиции параметров в файлах.

Номер позиции рассчитывается по формуле:

 $P = N - (F \cdot 128).$ Р – номер позиции; где: N – порядковый номер поля

F – номер файла

Примеры:

Требуется считать значение напряжения фазы 2 (порядковый номер – 2). Параметр будет сохранен 1. в файл № 0 (см. п. 6.6, шаг 3). Применив формулу, определяем номер позиции: $P = 2 - (0 \cdot 128) = 2$

Параметр будет сохранен в файле № 0, в позиции 2.

- Требуется считать величину 30-й гармоники напряжения фазы 1 (порядковый номер 330). Параметр 2. будет сохранен в файл № 2. Применив формулу, определяем номер позиции: $P = 330 - (2 \cdot 128) = 74$ Параметр будет сохранен в файле № 2, в позиции 74.
- 3. Требуется считать величину 7-й гармоники тока фазы 3 (порядковый номер 467). Параметр будет сохранен в файл № 3. Применив формулу, определяем номер позиции: $P = 467 - (3 \cdot 128) = 83$

Параметр будет сохранен в файле № 3, в позиции 83.

Для удобства работы рекомендуется записать все определенные и вычисленные номера в таблицу (пример – таблица 10):

Таблица 1	0
-----------	---

Nº	Порядковый № поля	Название параметра, соответствующего данному полю	№ файла	№ поз.
1	2	Напряжение, фаза 1	0	2
2	330	Уровень 31-й гармоники напряжения, фаза 2	2	74
3	467	Уровень 7-й гармоники тока, фаза 3	3	83
4	128		0	128
5	129		1	1
6	256		1	128
7	257		2	1
8	384	Уровень 20-й гармоники напряжения, фаза 3	2	128
9	385	Уровень 21-й гармоники напряжения, фаза 3	3	1

7. Технические данные

Параметр	Значение
Максимальное измеряемое напряжение	~700 В/500 кВ при подключении через трансформатор
Максимальный измеряемый ток	6 А/500 кА при подключении через трансформатор
Предельное входное напряжение	1000 B
Предельный входной ток	50 A
Материал корпуса	Негорючий АВС-пластик
Дисплей	ЖК, графический, 128×64 точки.
Рабочая температура	-20+70°C
Температура хранения	-20+80°C
Относительная влажность	090%
Интерфейс связи	RS-485
Монтаж	Щитовой
Питание	~85260 В, =110300 В, 50/60 Гц, 5 ВА
Габаритные размеры (В×Ш×Г)	96×96×80 мм
Масса	300 г

Технические характеристики прибора могут быть изменены без предварительного уведомления.

8. Свидетельство о приемке

Прибор электроизмерительный цифровой

Omix_____ заводской номер

№ _____ соответствует техническим характеристикам настоящего паспорта и признан годным к эксплуатации.

Дата выпуска _____

Представитель ОТК _____

М. П.

Дата продажи _____

9. Обратная связь

Со всеми вопросами и предложениями обращайтесь:

- по адресу электронной почты: support@automatix.ru
- по обычной почте: 195265, Санкт-Петербург, а/я 71;
- по телефону: (812) 324-63-80

Программное обеспечение и дополнительную информацию можно найти на нашем интернет-сайте kipspb.ru/support

10. Сведения о поверке приборов электроизмерительных цифровых Отіх

Прибор электроизмерительный Omix _____ заводской номер №

Поверка Прибора Отіх осуществляется в соответствии с Методикой поверки МП-2203-0178-2009, утвержденной ГЦИ СИ ФГУП «ВНИИМ им. Д. И. Менделеева» в 2009 г., по заказу клиента. Межповерочный интервал – 4 года.

Дата поверки	Вид поверки	Результаты поверки	Подпись и клеймо поверителя

11. Гарантийные обязательства

Гарантийный срок составляет 12 месяцев от даты продажи.

После окончания срока действия гарантии за все работы по ремонту/техобслуживанию с пользователя взимается плата.

Поставщик не несет никакой ответственности за ущерб, связанный с повреждением изделия при транспортировке, в результате некорректного использования или эксплуатации, а также в связи с подделкой, модификацией или самостоятельным ремонтом изделия пользователем.

Производитель: ООО «Автоматика» 195265, г. Санкт-Петербург, а/я 71 www.automatix.ru E-mail: support@automatix.ru Тел./факс: (812) 327-32-74, 928-32-74

Поставщик: ТД «Энергосервис» 195265, г. Санкт-Петербург, а/я 70 www.kipspb.ru Тел./факс: (812) 327-32-74, 928-32-74